Stat 534: formulae referenced in lecture, week 9, part 2: Population modeling

Song sparrows, 3 year model

• Eigenvalues and vectors are:

	Largest	2nd and 3rd l	argest, a pair
eigenvalue	0.918	-0.459 + 0.335i	-0.459 - 0.335i
eigenvector	0.969	0.895 + 0.000i	0.895 + 0.000i
	0.211	-0.254 - 0.186i	-0.254 + 0.186i
	0.131	0.096 + 0.301i	0.096 - 0.301i

- 2nd and 3rd eigenvalues and vectors are complex conjugate pairs
- Ensures that complex parts cancel out when computing things like population counts
- Notice that largest eigenvalue is a real number -Perron-Froebenius Theorem

So why does only largest eigenvalue and associated matter for long term population growth?

- $\boldsymbol{N}_{k} = \boldsymbol{A}^{k} \boldsymbol{N}_{0} = \boldsymbol{U} \boldsymbol{D}^{k} \boldsymbol{U}^{'} \boldsymbol{N}_{0}$
- Divide and multiply by largest eigenvalue

$$\boldsymbol{N}_{k} = (\lambda^{1})^{k} \boldsymbol{U} \begin{bmatrix} \left(\frac{\lambda^{1}}{\lambda^{1}}\right)^{k} & 0 & 0\\ 0 & \left(\frac{\lambda^{2}}{\lambda^{1}}\right)^{k} & 0\\ 0 & 0 & \left(\frac{\lambda^{3}}{\lambda^{1}}\right)^{k} \end{bmatrix} \boldsymbol{U}' \boldsymbol{N}_{0}$$
$$\boldsymbol{N}_{k} = (\lambda^{1})^{k} \boldsymbol{U} \begin{bmatrix} 1 & 0 & 0\\ 0 & \left(\frac{\lambda^{2}}{\lambda^{1}}\right)^{k} & 0\\ 0 & 0 & \left(\frac{\lambda^{3}}{\lambda^{1}}\right)^{k} \end{bmatrix} \boldsymbol{U}' \boldsymbol{N}_{0}$$

- Since $\lambda^2 < \lambda^1$ and $\lambda^3 < \lambda^1$, $\left(\frac{\lambda^2}{\lambda^1}\right)^k \to 0$, and $\left(\frac{\lambda^3}{\lambda^1}\right)^k \to 0$
- λ^1 controls the rate of population growth

- because contributions associated with λ_2 and λ_3 go to zero as $k \to$ large.

What's going on with those complex numbers?

- There is a close relationship between complex numbers and polar coordinates
- Which can be used to show that the initial dynamics are oscillations
 - If $\lambda_2 = a + b i$, period of oscillation is $2\pi/\tan^{-1}(b/a)$
- and the contribution from u^2 declines exponentially at rate $\lambda_1 / | \lambda^2 |$
 - where $|\lambda^2|$ is the modulus of $\lambda^2 = \sqrt{a^2 + b^2}$
 - $-\lambda_1/|\lambda^2|$ called the damping ratio = d

Song sparrows again:

		Largest	2nd largest pair	
•	eigenvalue	0.918	-0.459 + 0.335i	-0.459-0.335i
	modulus	0.918	0.568	0.568

- Damping ratio = 0.918/0.568 = 1.62
- larger damping ratio \Rightarrow oscillations die out more quickly
 - contribution of u^2 and u^3 to N_k after k years will be d^{-k}
 - after 1 years, contribution of u^2 is 1/d = 62% of what it was to N_0
 - after 10 years, contribution of u^2 is $(1/d)^{10} = 0.8\%$ of what it was to N_0

Sensitivity analysis: Which matrix elements "matter"?

- In general, if we change the value of one matrix element by a little bit, how much does λ change?
 - Notation: $\lambda(\mathbf{A})$ dominant eigenvalue computed from matrix \mathbf{A}

- Define \boldsymbol{P} as a matrix of 0's except for a single 1 for the element we want to change
- e.g.: Change f_1 a bit:

$$\boldsymbol{A} = \begin{bmatrix} 0 & f_1 & f_2 \\ \phi_1 & 0 & 0 \\ 0 & \phi_2 & 0 \end{bmatrix}, \quad \boldsymbol{P} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- What we want is

$$\frac{d\lambda(\boldsymbol{A})}{da_{ij}} = \frac{\lambda(\boldsymbol{A} + \delta\boldsymbol{P}) - \lambda(\boldsymbol{A})}{\delta}$$

for small δ .

- More carefully, the limit of this as $\delta \to 0$
- Sensitivity: additive change in a matrix element, e.g. add 0.01

$$S_{ij} = \frac{v_i \, u_j}{\boldsymbol{v}' \boldsymbol{u}}$$

- where \boldsymbol{u} is the stable population distribution and \boldsymbol{v} is the reproductive values.
- Can be computed for any transition, even those that are biologically impossible
- Answers a "what if it could be increased" question.
- Elasticity: proportional change in a matrix element, e.g. multiply by 1.1

$$E_{ij} = \frac{d \log \lambda(\mathbf{A})}{d \log a_{ij}} = S_{ij} \frac{a_{ij}}{\lambda(\mathbf{A})}$$

- Common to arrange sensitivities and elasticities into a matrix
 - Can compute all at once using an outer product

$$oldsymbol{S}=rac{oldsymbol{v}^{'}oldsymbol{u}^{'}}{oldsymbol{v}^{'}oldsymbol{u}}$$

 and element by element = Hadamard multiplication

$$\boldsymbol{E} = \boldsymbol{S} \circ \boldsymbol{A} / \lambda(\boldsymbol{A})$$

Song sparrows again

• Sensitivity matrix:

$$\boldsymbol{S} = \left[\begin{array}{rrrr} 0.42 & 0.09 & 0.06 \\ 1.93 & 0.42 & 0.26 \\ 1.19 & 0.26 & 0.16 \end{array} \right]$$

• Elasticity matrix:

$$\boldsymbol{E} = \begin{bmatrix} 0.00 & 0.26 & 0.16 \\ 0.42 & 0.00 & 0.00 \\ 0.00 & 0.16 & 0.00 \end{bmatrix}$$